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ABSTRACT
Non-LTE radiative transfer is a key tool for modern astrophysics: it is the means by which many key synthetic observables
are produced, thus connecting simulations and observations. Radiative transfer models also inform our understanding of the
primary formation layers and parameters of different spectral lines, and serve as the basis of inversion tools used to infer the
structure of the solar atmosphere from observations. The default approach for computing the radiation field in multidimensional
solar radiative transfer models has long remained the same: a short characteristics, discrete ordinates method, formal solver. In
situations with complex atmospheric structure and multiple transitions between optically-thick and -thin regimes these solvers
require prohibitively high angular resolution to correctly resolve the radiation field. Here, we present the theory of radiance
cascades, a technique designed to exploit structure inherent to the radiation field, allowing for efficient reuse of calculated
samples, thus providing a very high-resolution result at a fraction of the computational cost of existing methods. We additionally
describe our implementation of this method in the DexRT code, and present initial results of the synthesis of a snapshot of a
magnetohydrodynamic model of a solar prominence formed via levitation-condensation. The approach presented here provides
a credible route for routinely performing multidimensional radiative transfer calculations free from so-called ray effects, and
scaling high-quality non-LTE models to next-generation high-performance computing systems with GPU accelerators.
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1 INTRODUCTION

Radiative transfer calculations are a cornerstone of modern astron-
omy, modelling the propagation of light as it is affected by emission,
absorption, and scattering processes, and eventually observable im-
ages and spectra. This provides an essential connection between
ever-increasingly advanced numerical simulations and observations,
enabling scientific interpretation of the parameters of distant objects
that cannot be measured in situ. Some regimes of emission and ab-
sorption allow for simplified solutions to this problem. For example,
in the optically thin regime, it is sufficient to consider only plasma
emission properties along each line-of-sight, or in the regime of
local thermodynamic equilibrium (LTE), the plasma emission and
absorption properties for atomic1 spectral lines and continua can be
computed from the local thermodynamic state, allowing for lines-
of-sight to again be treated individually. Many atomic spectral lines
in bodies of astrophysical interest form outside of the LTE regime.
These are termed non-LTE. We define three primary departures from
LTE:

(i) Departures from a Boltzmann distribution for atomic excitation
levels.

★ E-mail: Christopher.Osborne@glasgow.ac.uk
1 Herein we use “atomic” to refer to both neutral and ionised atoms.

(ii) Departures from a Saha distribution for atomic ionisation frac-
tions.

(iii) Departures from a Maxwellian velocity distribution.

Most non-LTE methods are concerned with the (i) and (ii), how-
ever, Paletou & Peymirat (2021) have recently started to develop
approaches to additionally treat (iii).

Unlike in the LTE regime where the atomic ionisation and energy
level distributions can be assumed to be dominated by collisional
effects, non-LTE radiative transfer models the propagation of light
through a domain where the emission and absorption coefficients
are not known a priori, and are affected by this self-same radia-
tion field. Absorption in one radiative transition at one location will
therefore affect the atomic energy distribution at this location, and
potentially influence the other transitions of this atom. To this end,
iterative approaches have been adopted for solving for the atomic
ionisation and level populations (henceforth atomic populations or
level populations) throughout the domain by first solving for the ra-
diation field at a number of different wavelengths and computing
the transition rates, before updating the atomic populations follow-
ing these transition rates, and iterating this process until convergence.
For unpolarised radiation, the workhorse numerical methods of short
characteristics (Kunasz & Auer 1988) for solving the radiative trans-
fer equation for the radiation field, and a preconditioned treatment of
the transition rates (Rybicki & Hummer 1991, 1992), have evolved
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2 Osborne & Sannikov

little in the past 30 years. A detailed overview of these techniques is
provided in Hubený & Mihalas (2014).

The core numerical problem of non-LTE radiative transfer in mul-
tiple dimensions is that of determining the radiation field throughout
the domain, one key quantity of which is the first moment of the
radiation field

𝐽𝜈 ( ®𝑝) =
1

4𝜋

∮
S2

𝐼𝜈 ( ®𝑝, �̂�) 𝑑�̂�, (1)

at frequency 𝜈 and location ®𝑝, and with 𝐼𝜈 the monochromatic spe-
cific intensity in direction �̂�. This integral describes the gathering
of light over all directions surrounding a point, with the potential for
any other point in the domain to emit light that may be occluded en
route to ®𝑝. The angle-averaged 𝐽𝜈 ( ®𝑝), or indeed the full directional
distribution of 𝐼𝜈 ( ®𝑝, �̂�), must be determined at every ®𝑝 to compute
the atomic transition rates, and modification of emission and absorp-
tion coefficients at any point ®𝑝 may potentially affect the directional
distribution of intensity at any other point. Considering the steady-
state solution to the radiative transfer equation, the general non-LTE
problem is both non-linear and potentially extremely non-local.

This global and recursive problem does not occur uniquely in
astrophysical radiative transfer but is also a core problem of energetic
neutron transport in reactor design (e.g. Boyd et al. 2014), and the
problem of global illumination in computer graphics.

In this work we present an approach for decomposing the radiation
field, allowing for efficient reuse of calculated values, with a scal-
ing that allows for the construction of exponentially more samples
than those computed. This is achieved by exploiting the structure
of 𝐼𝜈 ( ®𝑝, �̂�), which is a five-dimensional function at each frequency
𝜈, but due to the propagation of light along straight paths (in the
non-relativistic limit), it presents internal structure that can be ex-
ploited to produce a far more efficient representation termed radiance
cascades.

1.1 Ray effects in multidimensional radiative transfer

Methods for evaluating (1) can be categorised into two types: (i)
stochastic (Monte Carlo), and (ii) deterministic techniques. Stochas-
tic path tracing methods are a cornerstone of modern computer graph-
ics (Pharr et al. 2023), but suffer from issues with convergence at high
optical depths present in many astrophysical models (Camps & Baes
2018). Additionally, whilst these methods rapidly provide an approx-
imate solution in many settings, their stochastic approach yields a
reduction in noise proportional to the square-root of the number of
samples taken.

Deterministic techniques are typically split into 𝑃𝑁 and 𝑆𝑁 meth-
ods as different approaches for computing the angular integral (Mar-
guet 2017). The former expands the intensity distribution into spher-
ical harmonics, truncated at an order 𝑁 . Due to the coupling between
the different angular terms this introduces, the order is typically kept
low, and used to model large sources with relatively isotropic in-
tensity distributions. The 𝑆𝑁 , or discrete ordinates method, is the
primary technique employed for non-LTE radiative transfer. It con-
sists of computing the angular integral via a set of 𝑁 discrete samples
at weighted angles: the most common choice being the sets described
by Carlson (1963); Lathrop & Carlson (1964). This method is known
to fail, producing so-called ray effects clearly visible in media without
scattering (Lathrop 1968), due to the purely discrete angular samples
of the intensity distribution taken, but these effects are dramatically
reduced in diffusive media. The choice of angular quadrature is there-
fore of the utmost importance. Štěpán et al. (2020) commented on
the failure of the Carlson quadrature set to correctly integrate weakly

polarised radiation fields, whilst Jenkins et al. (2024) were forced
to adopt a uniform solid angle quadrature with 96 rays/octant based
on HEALPix (Górski et al. 2005) to correctly integrate the radiation
field between the solar surface and a prominence model due to the
high albedo of the overlying structure. This latter treatment leads to
an extension of the 𝑆𝑁 technique by considering each sample as the
approximation of the average over a cone with associated solid-angle
rather than an infinitesimal sample.

In a discrete ordinates method, the obvious method of evaluat-
ing (1) is to trace 𝑁 rays from each ®𝑝 along the directions of the
quadrature, solving the radiative transfer equation along each, un-
til the edges of the domain. This is known as the method of long
characteristics (e.g. Jones & Skumanich 1973; Jones 1973), and is
extremely computationally expensive. Instead, the short characteris-
tics approach of Kunasz & Auer (1988) is commonly adopted, where
the radiation field is swept in the direction of transport across the
grid, with each ®𝑝 finding its upstream value along a ray by interpo-
lation. The choices of interpolation both along the ray and across
the grid are key to avoiding numerical instability and over-diffusion
(Auer & Paletou 1994).

Figure 1 shows a comparison between a discrete ordinates method
using the 10 ray/octant (accurate to 13th order spherical harmonics)
unpolarised quadrature of Štěpán et al. (2020) and our new radiance
cascades method, on a test problem involving optically thick sources,
occluders, and absorption. The “Radiance Cascades (Bilinear Fix)”
panel may be taken as the ground truth for this model. The test
problem is computed in three different wavelengths, then presented
as the red, green, and blue colour channels. It is composed of a
number of opaque emissive circles, two small opaque absorbing
circles (near the red and blue circles at the bottom and top of the
frame, respectively), and a central square absorbing region. This
region is weakly absorbing in red, and 100×more absorptive in green
and blue. The remaining space is pure vacuum with no emissive or
absorbing effects. The short characteristics method (computed with
a BESSER formal solver and BESSER spatial interpolation (Štěpán
& Trujillo Bueno 2013) using Lightweaver (Osborne & Milić 2021))
exhibits very strong ray effects that are not present in our radiance
cascades solutions. It is theoretically possible to increase the angular
quadrature sufficiently to create a smooth solution as in the radiance
cascades cases, but the computational cost scales linearly with the
number of angular samples employed. Correctly resolving distant
sources will require extremely high angular resolution due to the
small effective size of these sources, however this angular resolution
is not needed for nearby sources, where instead high spatial resolution
is needed. It is this tradeoff that our radiance cascades method exploits
to achieve the necessary angular resolution with dramatically higher
efficiency.

1.2 The DexRT Code

The DexRT code described herein is an open-source implementation
of the radiance cascades method applied to non-LTE radiative transfer
in atomic spectral lines. It is available on GitHub2 with archival on
Zenodo3, under the Apache-2.0 license4.

2 https://github.com/Goobley/DexRT/
3 https://zenodo.org/doi/10.5281/zenodo.13376008
4 https://opensource.org/license/apache-2-0
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SC 13th Order (SOTA) Radiance Cascades Radiance Cascades (Bilinear Fix)

Figure 1. Comparison of the state-of-the-art short characteristics method (using a 10th order quadrature) with two different variants of the radiance cascades
solution. For this scene, the “Radiance Cascades (Bilinear Fix)“ panel may be taken as the ground truth. The scene is composed of opaque emissive circles of
different intensities (at three different, independent wavelengths, represented by the red, green, blue triad), along with several absorbing features. For readability,
the images are tonemapped from high-dynamic range into a visual proxy, enhancing the visibility of dim regions over a simple linear scaling. The large dark red
box in the centre of the frame is weakly absorptive in red, and 100× more absorptive in blue and green. The two small black circles near the blue and red circles
at the top and bottom of the frame are strongly to all of the colour channels. The short characteristics solution presents very strong ray effects, demonstrating
its unsuitability for problems that transition between finely-structured optically thick and optically thin regions. The basic radiance cascades method provides a
very high-quality solution with minor ringing artefacts discussed in Section 2.5, whilst the radiance cascades with bilinear fix solution effectively provides the
expected ground truth solution.

2 RADIANCE CASCADES: MOTIVATION &
CONSTRUCTION

The core radiance cascades method was developed by A. Sannikov
(in prep)5 primarily for use in realtime computer graphics such as
video games, with the application to non-LTE radiative transfer by
C. M. J. Osborne

In Section 2.1 we motivate the construction of this technique
through the trade-off between necessary angular- and spatial-
resolution when sampling the radiation field. Then, in Sections 2.2–
2.4 we describe how these properties are exploited by the radiance
cascades method. Finally, in Section 2.5 we discuss the origin of
some artefacts that result from this method, along with potential
mitigation techniques.

2.1 Motivation - Penumbra Criterion

To motivate the construction of our new formal solution, let us con-
sider the properties of a simple two-dimensional flatland problem,
shown in Figure 2. The labelled distances on this figure are shown for
the points on segment B but generalise to A too. A simple emissive
line segment illuminates a region of free space with a completely
opaque blocker. Naturally, this blocker casts a shadow. Due to the
non-negligible angular size of the light source there is a region of
penumbra, or partial shadow, where the light received is proportional
to the angle (in 2D, solid angle in 3D) subtended by the light source
that is visible from the point.

Let us consider resolving the penumbra at two different distances
from the blocker: these near and far setups are shown by the points
on the line segments A and B, respectively. On both of these line
segments, two pink points are indicated: these are on the borders of

5 A preprint is available here: https://github.com/Raikiri/
RadianceCascadesPaper.

the penumbra and represent the closest points along these lines that
are fully shadowed and fully illuminated. Between these points the
brightness of the penumbra varies near-linearly as the illumination
is simply determined by the angular size of the fraction of the light
source. When comparing these scenarios, we can remark that close
to the blocker the radiation field changes rapidly in space and points
must be placed close together, whereas further from the blocker, the
radiation field varies smoothly on a much larger spatial scale (A < B).
Additionally, close to the blocker, the light source subtends a much
larger angle than far from the blocker (𝛼 > 𝛽).

Considering the geometry of the situation, for a light source of
length 𝑤 at perpendicular distance 𝑑 from the blocker a penumbra of
angular size

𝛾 = 2 arctan
𝑤

2𝑑
(2)

is cast. The penumbra at perpendicular distance ℎ from the blocker
then has linear size

𝐻 (ℎ) = 2 arctan
( 𝑤

2𝑑

)
ℎ = 𝛾ℎ. (3)

This provides a condition on the spatial sampling necessary to resolve
the penumbra

Δ𝑠 < 𝐻 (ℎ). (4)

There is also a necessary condition for our method to angularly
resolve the light source, which at distance 𝐷 subtends an angular
size of

𝜖 (𝐷) = 2 arctan
( 𝑤

2𝐷

)
, (5)

giving a necessary angular resolution of

Δ𝜔 < 𝜖 (𝐷). (6)

To provide a simple unification of these requirements, consider the
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Figure 2. Illustration of the penumbra criterion motivating the radiance
cascades method. Considering a linear light source illuminating a two-
dimensional plane with a blocker casting a shadow we observe that points
close to the blocker (on the segment A) require high spatial- but low angular-
resolution to resolve the illumination of the penumbra, whereas those far
from the blocker (on the segment B) require lower spatial- but higher angular-
resolution.

case where 𝑑 ≪ 𝐷 and 𝛾 is small, giving
ℎ ≈ 𝐷,

Δ𝑠 ≲ 𝛾𝐷,

Δ𝜔 ≲ 𝑤/𝐷.

(7)

These observations can then be distilled into the penumbra crite-
rion:

• Near-field radiance contributions vary with high spatial fre-
quency and low angular frequency.

• Far-field radiance contributions vary with low spatial frequency
and high angular frequency.

Mathematically,{
Δ𝑠 < 𝐹 (𝐷) ∝ 𝐷,

Δ𝜔 < 𝐺 (1/𝐷) ∝ 1/𝐷,
(8)

where 𝐹 (𝐷) and 𝐺 (1/𝐷) are arbitrary linear functions. In the case
where 𝑑 ≈ 𝐷, and the angle of the penumbra is not small, an equiv-
alent penumbra criterion may still be constructed, but requires that
Δ𝜔 scale superlinearly with 1/𝐷.

We hypothesise that the penumbra criterion holds generally. Con-
sider the same situation but where the light source is located far
from the occluder: the shadow will be sharper, i.e. the penumbra
will be narrower as the light source subtends a smaller angle. In
this situation points both close and far from the blocker require high
angular-resolution to resolve the distant light-source, while the points
close to the blocker require high spatial-, but low angular-resolution
to resolve the blocker and thus the penumbra. Radiance cascades are
designed to capture the variation of the radiance field at different

distances from each point within the constraints of the penumbra
criterion, considering arbitrary emitting and occluding features.

2.2 Radiance Intervals

The primary building block of radiance cascades is the radiance in-
terval. For an arbitrary volume of emitting and absorbing media,
considering the specific intensity at a single wavelength, we de-
note R𝑎,𝑏 ( ®𝑝, �̂�) the two-vector of monochromatic specific intensity
𝐼 ( ®𝑝, �̂�) and monochromatic optical depth 𝜏( ®𝑝, �̂�) accumulated along
the path ®𝑃(𝑡) = ®𝑝 + 𝑡�̂� for position ®𝑝, direction �̂�, and 𝑡 ∈ [𝑎, 𝑏], i.e.

R𝑎,𝑏 ( ®𝑝, �̂�) = [𝐼𝑏→𝑎 ( ®𝑝, �̂�), 𝜏𝑏→𝑎 ( ®𝑝, �̂�)], (9)

where quantities with the subscript 𝑏 → 𝑎 can be thought of as “ac-
cumulated along the path from 𝑏 to 𝑎”. R𝑎,𝑏 ( ®𝑝, �̂�) can be integrated
by the application of any traditional formal solver along this path. A
radiance interval therefore encodes a specific intensity that may illu-
minate ®𝑝, but also the effectiveness of this path to occlude radiation
from further upwind. A collection of radiance intervals with given
angular sampling can then encode the potential illumination received
by a point from a shell of distance [𝑎, 𝑏]. Note that the definition of
each radiance interval is not unique, as

R𝑎+𝑥,𝑏+𝑥 ( ®𝑝, �̂�) = R𝑎,𝑏 ( ®𝑝 + 𝑥�̂�, �̂�). (10)

A comparison of the conventional long characteristics ray-casting
approach and two annuli of radiance intervals around a point sam-
pling a scene of opaque primitives (circle, rectangle, and triangle)
is shown in Figure 3. In a discretised solution, the long characteris-
tics ray-casting approach attempts to encode the radiation field from
all distances using a single angular quadrature, leading to unneces-
sary oversampling for nearby sources, and potential undersampling
of distant sources. The two different shells described by radiance
intervals only consider interactions with primitives inside their range
and a different optimised quadrature can therefore be used for each
of these to satisfy the penumbra criterion for each radiance interval.

2.2.1 Radiance Interval Merging

Contiguous radiance intervals can be merged via the merging oper-
ator M such that

R𝑎,𝑐 ( ®𝑝, �̂�) = M
(
R𝑎,𝑏 ( ®𝑝, �̂�),R𝑏,𝑐 ( ®𝑝, �̂�)

)
= [𝐼𝑐→𝑏 ( ®𝑝, �̂�) + exp (−𝜏𝑐→𝑏 ( ®𝑝, �̂�))𝐼𝑏→𝑎 ( ®𝑝, �̂�),

𝜏𝑐→𝑏 ( ®𝑝, �̂�) + 𝜏𝑏→𝑎 ( ®𝑝, �̂�)] .
(11)

This procedure for merging intervals arises naturally from the radia-
tive transfer equation.

2.3 Radiance Cascades

The question now arises of how to use radiance intervals to exploit the
properties of the penumbra criterion discussed in Section 2.1 and thus
efficiently encode the radiation field in arbitrarily complex models
with many interfaces between optically-thin and -thick structures.

From the penumbra criterion, to correctly resolve the radiation
coming from a shell [𝑎, 𝑏] where 𝑏 > 𝑎, we require a spatial
resolution Δ𝑠 = min(𝑎, 𝑏) = 𝑎, and an angular resolution of
Δ𝜔 = min(1/𝑎, 1/𝑏) = 1/𝑏. We then employ a set of radiance
intervals to determine the radiation at a point ®𝑝 from each surround-
ing shell. The set of radiance intervals representing a particular shell

RASTI 000, 1–20 (2024)
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a) b) c)

Figure 3. Comparison of long characteristics style ray-casting from a point against two different radiance intervals over the same field. The three coloured
primitives can be considered opaque emissive sources. In a) we show the a conventional ray-casting approach, whilst b) and c) show the radiance found inside
annuli described by closer and further radiance intervals (shown in grey). Note that in b) only the blue circle is found by these samples, whilst in c) obscured
components of the orange rectangle and green triangle are sampled.

for each point in the model is termed a radiance cascade, i.e. a ra-
diance cascade encodes R𝑎,𝑏 ( ®𝑝, �̂�) for a given [𝑎, 𝑏], over all ®𝑝 in
the model and �̂� ∈ S2. A sufficient set of radiance cascades can be
constructed by ensuring that the penumbra criterion remains valid
for each cascade, and a natural definition for this is to scale each
subsequent cascade with exponential doubling, giving a definition
for cascade 𝑖 covering a shell [𝑡𝑖 , 𝑡𝑖+1] from each probe centre
Δ𝑠 ∝ 2𝑖 ,
Δ𝜔 ∝ 1

2𝛼𝑖 ,

𝑡𝑖 ∝ 2𝛼𝑖 ,
(12)

where 𝛼 ≥ 1 is known as the cascade branching factor. Different
branching factors can naturally be applied to all three terms whilst
satisfying the penumbra criterion, but in practice we have found good
efficiency by applying it to the angular sampling and radiance interval
lengths, whilst leaving the sample spacing increasing by successive
doubling. Note that the values of these parameters on the shortest
range cascade, from which all others are scaled, are free parameters
and must be set so that the penumbra criterion is met, as such we
require{
𝑡0 = 0,
lim𝑖→∞ 𝑡𝑖 = ∞.

(13)

In practice satisfactory expressions for Δ𝑠 and Δ𝜔 on the zeroth
cascade can be quickly found by visual inspection of the solution,
taking into account the spatial scales of the problem.

A simple approach that satisfies these discretisation criteria is to
encode radiance intervals in probes placed in a uniform rectilinear
grid, with regularly spaced directional intervals. A set of five ra-
diance cascades following this structure (with 𝛼 = 1) is shown in
Figure 4. The shortest range cascade is shown in blue, starting at
each probe location: the points where 𝐽 is to be determined, and
utilises 4 angular samples. The next cascade, with twice the spacing,
is shown in orange, and starts at a distance of 𝑡0 away from each
probe location and contains 2𝛼 × 4 = 8 angular samples per probe.
To correctly resolve boundary conditions the rays in the upper-most
cascade typically extend until they leave the simulation domain. This
does not violate the penumbra criterion provided the cascade natu-
rally has enough angular resolution to encode the far-field radiation

Figure 4. A set of five radiance cascades with following the scaling laws
of (12) with branching factor 𝛼 = 1. These cascades (ordered blue, orange,
green, red, purple) capture progressively higher angular-resolution represen-
tations of increasingly distant radiation field components at decreasing spatial
resolution, thus exploiting the properties of the penumbra criterion.

field of the boundary. If this is not the case, additional cascades are
added until this condition is met.

2.3.1 Interpolated Ray Construction

From the previous section, our set of radiance cascades, as illustrated
in Figure 4 encodes the radiation field throughout the model. This
does not, however, give a value for the angle-averaged radiation
field 𝐽 at every point in the model. The determination of 𝐽 at each

RASTI 000, 1–20 (2024)
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01

2 3

Figure 5. Five radiance cascades, interpolated on one probe of cascade 0.
The colour of each cascade is the same as Figure. 4. In quadrant 0 a single ray
constructed by cascade interpolation and merging is highlighted in dashed
black. The constructed rays that make up quadrant 2 are highlighted in pink.

point is computed by interpolation and merging of the cascades. In
Section 2.1, we remarked that the intensity between the fully obscured
and fully illuminated probes on segments 𝐴 and 𝐵 of Figure 2 varied
linearly, and indeed, the information encoded in the radiance cascades
can be linearly interpolated in both space and direction. This is due
to the spatial and angular resolutions meeting their specific Nyquist
criteria: higher frequency information is removed due to the design
of the cascades. For example, a probe in cascade 0 does not need
to and, indeed, cannot encode a field with finely-structured angular
variation as it only includes contributions from near-field radiance.
On the other hand, probes in an upper cascade cannot encode fine
spatial variations, as they only encode contributions from far-field
radiance which varies slowly in space.

Probes from higher cascades are interpolated onto lower cascades
by 𝑛-linear interpolation. In the case of our 2D example, this is
bilinear interpolation from four probes of cascade 𝑖 + 1 onto one
probe of cascade 𝑖. As the relative positions of the probes are well
known, the weights for this bilinear interpolation can be computed
very efficiently.

An illustration of the five cascades from Figure 4 interpolated onto
a single probe of cascade 0 is shown in Figure 5 with one effective
ray of quadrant 0 highlighted in dashed black. The highlighted inter-
polated radiance intervals are then merged following (10). We note
that following interpolation these radiance intervals share a common
origin ®𝑝 but are not contiguous in angle �̂�. In practice this is not an
issue for determining 𝐽, because, as discussed in Section 1.1, each
radiance interval may serve as an approximation of the radiance field
in a cone, and each radiance interval of cascade 𝑖 has 2𝛼 “child”
rays in this same cone in cascade 𝑖 + 1. The recursive merging of all
“child” rays of the single ray of cascade 0 in quadrant 2 is highlighted
in dashed pink. When considering a cone such as this, the jagged-
ness of the single highlighted black ray in quadrant 0 is no longer so
apparent. As our primary quantity of interest is the angle-averaged

𝐽, we do not anticipate this introducing meaningful error so long
as the tunable cascade 0 parameters are correctly configured (see
Section 2.3).

If one instead wishes to determine the specific intensity along a
particular infinitesimal angular ray, then the upper cascades can be
interpolated in angle prior to merging.

Implementations of the radiance cascades method can perform
this interpolation and merging step iteratively: after calculation, each
interval of cascade 𝑖 merges with the 2𝛼 “child” intervals of cascade
𝑖 + 1. Cascade 𝑖 − 1 is then computed and merged with cascade 𝑖.

2.4 Interpolated Ray Analysis

For the discussion of interpolated rays we remain in the two-
dimensional flatland setup, but stress that this analysis also applies
to a general three-dimensional setup.

Considering flatland cascades 0 and 1, with 𝛼 = 1. In cascade 0 we
have 𝑃0 probes, with𝑊0 angular samples taken at each probe, giving
the number of rays to be computed in cascade 0, 𝑁𝐶0 = 𝑃0𝑊0.
For cascade 1, the spatial resolution is halved on each axis, i.e.
𝑃1 = 𝑃0/4 whilst the angular resolution is doubled: 𝑊1 = 2𝑊0, thus
𝑁𝐶1 = 𝑃1𝑊1 = 𝑁𝐶0/2. Now, by interpolation, we can construct
𝑊1 rays of cascade 1 at each probe in cascade 0, giving an effective
number of rays of length 𝑡1 constructed 𝑁 ′

𝐶1
= 𝑃0𝑊1.

We note that we have computed
∑
𝑖 𝑁𝐶𝑖

= 𝑁𝐶0 + 𝑁𝐶1 = 3𝑁𝐶0/2
rays, but by interpolation and merging have constructed 𝑁 ′

𝐶1
= 2𝑁𝐶0

rays. This behaviour continues as we add additional cascades: each
cascade requires half of the rays of the previous, but doubles the
effective angular sampling of the outermost radiance intervals by a
factor of two, whilst interpolating this onto the spatial sampling of
cascade 0. In general, for 𝐼 cascades this gives



Rays computed =

𝐼∑︁
𝑖

𝑁𝐶𝑖

= 𝑁𝐶0 + 𝑁𝐶1 + . . . + 𝑁𝐶𝑖

=

(
1 +

1
2
+ . . . +

1
2𝑖

)
𝑁𝐶0

< 2𝑁𝐶0 ,

Rays constructed = 𝑁 ′
𝐼

= 2𝐼𝑁𝐶0 .

(14)

This asymptotic scaling breaks down before allowing the construc-
tion of infinite rays at finite cost, as for a given discretised model there
are limits on the angular sampling needed to resolve the far-field ra-
diance. However, whilst the penumbra criterion holds, the scaling of
constructed rays also holds, allowing for the integration of the ra-
diation field at high spatial- and angular-resolution far cheaper than
could be obtained with any traditional ray-casting approach where a
doubling of angular resolution requires a doubling of the number of
rays.

We note that the number of rays computed does not necessarily
linearly scale with the computing time necessary for a solution: the
radiance intervals in upper cascades are longer than those in lower
cascades, and a full solution to the radiative transfer equation along
their length can require more computational effort than for a short
ray. Nonetheless, this scaling remains very powerful, and multiple
approaches can be taken to accelerate the longer rays.

This scaling law is also affected by the branching factor 𝛼. For
example, in two-dimensions with 𝛼 = 2 each cascade contains the
same number of rays, i.e. 𝑁𝐶𝑖

= 𝑁𝐶0 , so the total number of rays
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computed becomes 𝐼𝑁𝐶0 , whilst the number constructed by interpo-
lation becomes 2𝛼𝐼𝑁𝐶0 . As such, the exponential scaling remains.
In all examples presented in this work we employ 𝛼 = 2.

2.5 Artefacts

For correctly chosen parameters, as shown in Figure 1, the radiance
cascades solution eliminates the ray effects associated with classical
discrete ordinates methods by dramatically increasing the angular
resolution of the far-field. This method presents a different form
of artefact which is visible in the middle panel of Figure 1: a slight
ringing that is visible around bright optically thick sources, embedded
in optically thin layers. A simple test case with a single light source
illustrating this ringing is shown in Figure 6. Due to the tonemapping
of this image (increasing the effective brightness of dim regions),
the rings are very easily visible. Consulting the relative error plot
(second from the top on the right-hand column), we see that the
error extends up to slightly over 10%. This ringing occurs where
the different cascades meet, and this test represents the worst-case
scenario of a small, very high opacity source (100 mean free paths per
pixel, in a 1024×1024 image) embedded in a completely transparent
medium. In more realistic cases for radiative transfer of spectral lines
in sufficiently resolved models, the errors associated with ringing are
typically less than a few per cent – comparable or lower than the error
associated with the interpolation schemes used in multidimensional
short characteristics. We note that the radiance cascades solution
always lies above the theoretically predicted solution (see the relative
error plots in the right-hand column), this is due to the discretisation
of the circle into pixels used in the input to the model: any pixel
partially through which the boundary of the circle passes is fully
included as part of the opaque source. This also explains the high
error immediately next to the source, which falls off very rapidly over
the first few pixels. The error rising sharply (but remaining low) in
the [500, 512] region for the 0° and 90° lines is due to the lack of
full bilinear coverage of the upper cascades close to the edge of the
grid. Outside the outermost row or column of probes in a cascade, we
clamp the lookup and effectively perform linear interpolation along
the axis parallel to the edge, but lose the falloff due to there being no
further probes.

The ringing artefact can be addressed by the use of the so-called
bilinear fix (shown in the lower panels of Figure 6) whereby each
radiance interval in cascade 𝑖 is traced from its usual starting position
to the starting position of the associated child cone on each of the four
probes of cascade 𝑖 + 1 that are normally bilinearly interpolated and
then merged with this interval. Instead, following the bilinear fix, the
four distinct radiance intervals are each merged with their associated
samples from cascade 𝑖+1, and then averaged using the usual bilinear
weights. This leads to a 4× increase in the number of rays that need
to be traced on every cascade except cascade 𝐼, however, in addition
to the ringing, the bilinear fix also addresses potential issues related
to light leaking through an occluder that is too small. That said,
light leaking artefacts are typically an indication that the penumbra
criterion is violated for some property of the model (e.g. the spacing
of cascade 0 probes is too large). In practice, this leaking is not an
issue in the models considered here, as we apply the method to the
output of magnetohydrodynamic (MHD) models, with a cascade 0
probe in every cell where 𝐽 is to be found, and such small features
(one grid cell or smaller) should not occur if the underlying model
correctly resolves the thermodynamic structure.

The ringing in the method originates from a situation where both
a probe in cascade 𝑖, and some of the bilinear probes sampled in

cascade 𝑖 + 1 sample the same source. This is illustrated in Figure 7:
the green probe shows the probe of cascade 𝑖 and the four orange
probes are in cascade 𝑖 + 1. The result of the merge with each of the
four probes of 𝑖 + 1 is shown in the lower row, along with the final
interpolated result (labelled M) where the opacity of the samples
is set by their bilinear weights. Probes A and B do not sample the
source, as they are closer than the probe of cascade 𝑖 + 1 and their
radiance intervals start at the same distance as the end of the interval
associated with the probe of cascade 𝑖. Due to their spatial offset
however, probes C and D do sample the source. The directional
alignment between the probe of cascade 𝑖 and C is good, and so
this contribution is occluded during the merging process. This is not
the case for probe D, which accumulates the contribution from the
light source at a different angle to the occlusion from the probe of
cascade 𝑖. As such, the result of merging (shown as M) the probe of
cascade 𝑖 with the four bilinearly interpolated probes of cascade 𝑖 + 1
is contains two sources corresponding to this light source: the green
contribution from the probe of cascade 𝑖 which contains the expected
irradiance contribution from a probe at this distance, in addition to
an extra contribution from probe D. The ringing artefact is therefore
due to parallax between the the different probes of cascade 𝑖 + 1 and
cascade 𝑖, leading to non-conservation of energy at locations where
cascades overlap a light source.

The bilinear fix therefore remedies this by effectively reprojecting
the sampling rays of each probe to those of the four bilinearly sampled
probes of cascade 𝑖 + 1, minimising parallax effects, and ensuring
occlusion from cascade 𝑖 is correctly applied. An illustration of the
effects of this fix is shown in Figure 8. This is an extreme case
where the radiance interval length is short compared to the probe
spacing and the light source is close to the probes, thus exaggerating
the parallax effects. The final merged result, labelled M, contains
four different contributions, both from the parallax corrected rays of
the cascade 𝑖 probe to the ray start positions of A and B, but also
from C and D. These represent the correct integrated radiance from
the light source (to discretisation error, given the probe spacing),
thanks to the corrected weighting of each sample through one set
of bilinear weights, but the samples are discontinuous in angle due
to the extreme nature of this scenario. In applications with typical
parameters, this angular spreading of radiance will be much lower.

2.6 Discussion

Building from the penumbra criterion (Section 2.1) we have con-
structed a framework to exploit the properties of radiation fields to
efficiently compute and store an arbitrarily complex field. We stress
that the construction of radiance cascades presented here is neither
unique nor necessarily optimal, rather, it is one that is simple to im-
plement. For example, the grid of probe placements shown in Figure 4
is a simple construction that meets the chosen scaling law, but relies
on 𝑛-linear interpolation. In a three-dimensional problem, 8 samples
of cascade 𝑖 + 1 are therefore required for each sample of cascade 𝑖.
This could potentially be improved upon with a different grid layout
allowing for efficient use of a simplex interpolation strategy.

We also note that the use of a radiance cascades framework does
not enforce any particular method for the calculation of the radiance
intervals. For example, radiance interval merging can be exploited
to compute long-range radiance intervals by a process known as ra-
diance interval extensions. In this situation, a conventional formal
solver is employed to trace an initial small fraction of each interval
(at least the distance between the probes) before recursively extend-
ing these intervals by merging with the interpolated value at their
endpoint.
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Figure 6. Comparison of falloff around an opaque circular source using basic radiance cascades, and those with the bilinear fix. On the left-hand side, a
tonemapped representation of the radiation field is shown. The upper panel of each pair on the right-hand side is a comparison of the intensity falloff against a
theoretical model shown for cuts at different angles starting from the centre of the source, whilst the lower panel of each pair is the relative error between the
solution along these different cuts and the expected falloff. We note that this is the worst-case scenario for ringing from the basic radiance cascades method as it
shows an extremely opaque source embedded in a completely transparent medium.

3 IMPLEMENTATION PRACTICALITIES

In the following we describe the initial version of DexRT , a two-
dimensional non-LTE radiative transfer code utilising radiance cas-
cades intended primarily for the modelling of solar isolated struc-
tures, such as prominences. These structures are cool and dense
plasma suspended in the hot and tenuous solar corona. They are
the epitome of non-LTE plasma physics typically only visible in
narrow spectral lines due to the Sun’s radiation field radiatively ex-
citing their component plasma (Labrosse et al. 2010). Due to the
ease of observing these structures in detail from Earth, along with
their intensely non-equilibrium nature, cool isolated solar structures
are a key tool for developing our understanding of non-equilibrium
plasma throughout the universe. Radiative transfer models of these
structures have typically considered simplified atmospheric models,
consisting of of one- or two-dimensional slabs of either isothermal
and isobaric plasma (e.g. Gouttebroze et al. 1993; Paletou et al. 1993,
for 1D and 2D, respectively), or with the addition of a prominence-
to-corona-transition region (PCTR) obeying functional magnetohy-
drostatic equations (e.g. Labrosse & Gouttebroze 2004; Heinzel &
Anzer 2001, for 1D and 2D respectively). The history of these models
is reviewed in Labrosse et al. (2010).

Meanwhile, MHD models of prominences, with drastically sim-
plified radiative treatments, have evolved dramatically, investigating
mechanisms for the formation and stability of these structures, and
including detailed behaviour at high-resolution in two- and three-

dimensions (e.g. Zhou et al. 2020; Martínez-Gómez et al. 2022;
Jenkins & Keppens 2022; Jerčić et al. 2024). There have been few
attempts to perform non-LTE synthesis of these models, outside of
the use of a simplified H𝛼 proxy (Heinzel et al. 2015; Gunár &
Mackay 2015), until an initial attempt to unify the radiative treat-
ments of isolated solar structures with those employed in the lower
solar atmosphere by Jenkins et al. (2023).

The complex structuring of modern prominence models, com-
bined with their high optical depths in some spectral lines, makes
them prime candidates for internal shadowing and radiative pump-
ing effects that are poorly considered in the current generation mod-
els. Their fine structure makes the use of short characteristics pro-
hibitively expensive in multiple dimensions (Jenkins et al. 2024).
Additionally, these isolated structures cannot be treated entirely in
a vacuum, as recently Jenkins et al. (2024) showed that they may
have non-negligible albedo, increasing the radiation field between
them and the solar surface, and in turn influencing the lower solar
atmosphere, causing significant ionisation. To this end, we have de-
veloped DexRT to provide non-LTE radiative transfer in models of
solar prominences with much greater accuracy than has previously
been possible.

3.1 2D Invariance

The radiance cascades examples presented in Section 2 demonstrate
a monochromatic formal solution in a flat two-dimensional plane,

RASTI 000, 1–20 (2024)



Radiance Cascades for Non-LTE Radiative Transfer 9

A

B

C

D

A B C D M

Finite Length Probes (Standard Merge)

Figure 7. Illustration of the scenario in the basic radiance cascades method
that leads to the ringing artefact. At the top of the graphic a probe of cascade
𝑖 is shown in green, and the four bilinearly sampled probes of cascade 𝑖 + 1
are shown in orange. The rings surrounding the probes indicate the end of the
radiance interval associated with the probe of cascade 𝑖, and the start of the
radiance interval associated with cascade 𝑖 + 1. Both the probe of cascade 𝑖

and probes C and D of cascade 𝑖 + 1 see the yellow light source, as indicated
by the yellow cone. The opacity in the probe of cascade 𝑖 prevents merging the
hatched area. The lower row provides an illustration of the result of merging
the probe of cascade 𝑖 with each probe of cascade 𝑖 + 1, and the bilinear
interpolation of these indicated by M. Note the additional source that isn’t
occluded in D and M, this is the origin of the ringing artefact.

and this method generalises directly to three dimensions. To correctly
integrate 𝐽 and the necessary radiative rates it is necessary to integrate
over the angular unit sphere at each discretised cell in the volume,
so slight modifications to the flatland scheme are needed. As is
convention in two-dimensional radiative transfer, we take the model
to be infinite and homogeneous along the axis (henceforth 𝑦-axis)
perpendicular to the two varying axes. To achieve this we augment
the flatland quadrature discussed in Section 2 with a number of
inclined rays. In all examples presented here we use a Gauss-Radau
quadrature with eight rays for inclination, so each ray of the flatland
case is effectively replaced with 8 rays with the same 𝑥− 𝑧 projection
and different inclinations in 𝑦. This setup integrates one hemisphere
of the unit sphere, which in the case of a homogeneous 𝑦-axis is
symmetric to the other hemisphere.

3.2 Formal Solution & Grid Structure

The DexRT formal solution uses a full radiance cascades based so-
lution as described in Section 2 at each wavelength. The monochro-
matic radiative transfer equation (RTE) is given by

�̂� · ∇𝐼𝜈, �̂� = 𝜂𝜈, �̂� − 𝜒𝜈, �̂� 𝐼𝜈, �̂� , (15)

where 𝜂𝜈, �̂� and 𝜒𝜈, �̂� are the monochromatic emissivity and opacity
at frequency 𝜈 in the model from a particular point in a direction �̂�.
To compute R𝑎,𝑏 in (9) the RTE is solved along a ray by a piecewise

A

B

C

D

A B C D M

Finite Length Probes (Bilinear Fix Merge)

Figure 8. Illustration of the same scenario as Figure 7, but with the bilinear fix
applied. The two contributions on the green probe of cascade 𝑖 are the result of
performing the bilinear fix (tracing rays from their usual start position to the
start position of the child rays in cascade 𝑖 + 1 for each of the four probes) for
probes A and B. The bilinear fix rays from the probe of cascade 𝑖 to the start
of rays from probes C and D do not reach the source. The final merged result
M no longer contains an additional contribution (as the bilinear weights of
the four contributions correctly sum to unity), and the angular size of the light
source is correct (to discretisation error from probe spacing). Whilst there are
multiple components from different directions representing the same source,
in practice the only occurs over a small range of distances, and the angular
spread is dramatically decreased at larger source distances.

constant direct integration. In this scheme, the ray segment passing
through a cell of the domain integrates as if this cell has uniform
thermodynamic properties and atomic level populations, i.e. for a
path length 𝑑𝑠 within a cell 𝑖


𝜏𝜈 (𝑠 + 𝑑𝑠) = 𝜏𝜈 (𝑠) + 𝜒𝜈,𝑖, �̂� 𝑑𝑠,

𝐼𝜈 (𝑠 + 𝑑𝑠) = 𝐼𝜈 (𝑠) exp(−𝜒𝜈,𝑖, �̂� 𝑑𝑠)
+ 𝜂𝜈,𝑖, �̂�

𝜒𝜈,𝑖, �̂�
(1 − exp(−𝜒𝜈,𝑖, �̂� 𝑑𝑠)),

(16)

where 𝜂𝜈,𝑖, �̂� and 𝜒𝜈,𝑖, �̂� are the emissivity and opacity from all
sources at a particular frequency in cell 𝑖 for the direction aligned
with this ray. This effective definition of the source function 𝑆𝜈 =

𝜂𝜈/𝜒𝜈 differs from the one used in Lightweaver (Osborne & Milić
2021) and RH (Uitenbroek 2001) by the omission of the background
scattering term. In our current models of isolated structures the basic
background scattering effects (e.g. Thomson scattering) are ignored.

The formal solution in DexRT distinguishes between velocity-
dependent and -independent contributions to emissivity and opac-
ity. At the start of a formal solution for a wavelength, the velocity-
independent terms (continua and lines in cells with no bulk velocity)
are computed once and stored, whereas velocity-dependent terms
(spectral lines) are computed on the fly for each ray given its spe-
cific direction, and thus projected plasma velocity passing through a
cell. These calculations are performed in the observer’s frame. Each
cell is tagged based on the magnitude of its velocity as to whether
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velocity-dependent terms are necessary, by default this threshold is
1/2 of the thermal velocity of the atom associated with the governing
transition at this wavelength. Governing transitions are explained in
Sec. 3.3.

In the current work we adopt a “back-to-front” solution to the
radiative transfer equation. That is, radiance intervals are computed
towards their associated probe. This method works equally well with
a “front-to-back” solution instead, which could potentially allow
for a more efficient solution, allowing early termination from the
calculation of long radiance intervals at high optical depths.

As discussed in Section 2.6 the choice of a piecewise constant
scheme is effectively arbitrary, and can be changed without affect-
ing the radiance cascade structure. It is adopted here to simplify
interoperation with most MHD codes, which typically follow finite
volume definitions. In the finite volume framework, the values stored
per cell represent the average over the volume, rather than a point-
wise value, as would be the case in a finite difference method. Short
characteristics methods have typically employed finite-difference so-
lutions, assuming the thermodynamic parameters and atomic energy
distribution is known at discrete points in the simulation domain.
The RTE is then solved along characteristics where the evolution of
the source function and opacity are assumed to follow a prescribed
variation e.g. piecewise parabolic Auer & Paletou (1994), mono-
tonised quadratic Bézier (Štěpán & Trujillo Bueno 2013), or third
order Bézier (de la Cruz Rodríguez & Piskunov 2013). This style of
variation is not directly compatible with the approach taken to com-
pute the thermodynamic parameters in MHD codes, and typically
requires interpolation to the start and points of each characteristic,
introducing an additional potential source of error.

Radiance intervals are spawned relative to the radiance probes of
the cascades. The probes of cascade 0 are placed at the centres of the
grid cells.

In DexRT only uniform grids are supported due to the current
radiance cascades implementation which depends on uniform spac-
ing between probes in a cascade, and also due to the efficiency of
traversing such a grid using a digital differential analyser (DDA)
strategy (conceptually the same as Bresenham’s line drawing algo-
rithm, Bresenham 1965). Additionally, most MHD models used in
solar simulations have adopted a uniform grid spacing (potentially
with a stretch along one axis), so supporting a general arbitrary grid
spacing is unnecessary (e.g. Vögler et al. 2005; Gudiksen et al. 2011;
Xia et al. 2018; Keppens et al. 2023). This uniform spacing could
be an issue for the formation of very thick lines such as Ly 𝛼, but
if the PCTR is sufficiently resolved in the model, so as to have an
exponential variation in density, then as discussed by Mihalas et al.
(1978), this is a reasonable approach.

3.3 Non-LTE Iteration

Aside from the radiance cascade formal solver, DexRT adopts a
conventional non-LTE setup similar to that of Lightweaver (Os-
borne & Milić 2021). The preconditioned rate matrix is produced
by the “same-preconditioning” multi-level accelerated lambda iter-
ation (MALI) method of Rybicki & Hummer (1992), instead of the
“full-preconditioning” approach adopted in Lightweaver.

We have found the “same-preconditioning” to often converge
slightly faster than the “full-preconditioning” approach. Addition-
ally, it requires less memory due to the elimination of the cross-
coupling terms. Whilst these aren’t required to be stored in the “full-
preconditioning” approach, there is a substantial computational cost
to not doing so, requiring additional loops across all overlapping
transitions.

For simplicity, a diagonal approximate lambda operator (ALO)
Λ∗ is adopted, and due to the piecewise constant formulation of the
formal solver the monochromatic, directional ALO is given by

Λ∗
𝜈, �̂�

(𝑘) = exp
(
−𝜏𝜈,𝑘, �̂�

)
, (17)

where 𝜏𝜈,𝑘, �̂� = 𝜒𝜈,𝑖, �̂� 𝑑𝑠 is the monochromatic optical depth from
the centre to the edge of cell 𝑘 along direction �̂�. As usual, the
Ψ∗
𝜈, �̂�

operator required by the MALI method is computed from
Λ∗
𝜈, �̂�

(𝑘)/𝜒𝜈,𝑘, �̂� . Due to the purely local nature of the ALO, it
is only computed for cascade 0, and temporarily stored before a
second pass that accumulates the terms in the rate matrix Γ from this
wavelength.

The numerical implementation of this MALI method is similar
to that of Lightweaver detailed in appendix B of Osborne & Milić
(2021). Using the notation therein the U 𝑗 term of (B17) is then re-
placed by 𝑈 𝑗𝑖 for the transition in question (with upper and lower
level 𝑗 and 𝑖 respectively) and X𝑙 of (B18) is replaced by 𝜒

†
𝑖 𝑗

, remov-
ing the two summations necessary for the cross-coupling terms. The
effective intensity term 𝐼eff (B19) is now per transition rather than
per atom and computed as

𝐼eff
𝜈, ®𝑑; 𝑗𝑖

= 𝐼† (𝜈, ®𝑑) − Ψ∗
𝜈, ®𝑑

𝑈 𝑗𝑖 , (18)

in the notation therein, or

𝐼eff
𝜈, �̂�; 𝑗𝑖 (𝑘) = 𝐼

†
𝜈, �̂�

(𝑘) − Ψ∗
𝜈, �̂�

(𝑘) ·𝑈 𝑗𝑖 (𝑘) (19)

in the notation of this work, where † refers to the value at the previous
value of the level populations, in the case of intensity representing
the value just calculated inside the formal solver. As in Lightweaver,
only the off-diagonal terms of the rate matrix Γ are accumulated
during each iteration, whilst the diagonal terms is filled in by the
conservation equation requiring that the total transition rate out of
each level match the sum of transitions from this level into every other
level. The Γ matrix is then used to update the populations towards
statistical equilibrium by solving

Γ𝑠 ®𝑛𝑠 = ®0 (20)

for each species 𝑠. No forms of convergence acceleration are currently
employed.

Charge conservation can also be enforced via a single Newton-
Raphson iteration after each statistical equilibrium update as origi-
nally described by Heinzel (1995) and Paletou (1995). The method
employed here is the same as the generalisation to MALI with over-
lapping transitions presented in Appendix D of Osborne & Milić
(2021), but currently only includes hydrogen in the Newton-Raphson
matrix. This approach is also employed to determine a self-consistent
electron density at the start of a simulation by considering only the
collisional rates (thus setting the populations to LTE).

As numerical models of prominences are often specified in terms
of pressure, we also allow for pressure conservation (requiring charge
conservation to be enabled). This approach scales the total hydrogen
number density (from which all other atomic populations are scaled)
such that

𝑃 = 𝑁tot𝑘𝐵𝑇 = (𝐴tot𝑛𝐻tot + 𝑛𝑒)𝑘𝐵𝑇 (21)

is held constant to a value provided with the input atmosphere. Here
𝑁tot is the total number density of atoms and electrons, 𝐴tot is the
total abundance of atomic matter relative to hydrogen, 𝑛𝐻tot is the
hydrogen number density, 𝑛𝑒 is the electron number density, 𝑘𝐵 is the
Boltzmann’s constant, and 𝑇 the local plasma temperature (assum-
ing a one-fluid model). The update to 𝑛𝐻tot is performed by simply
computing the difference in pressure due to the change in electron
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density from charge conservation, and adjusting 𝑛𝐻tot to compen-
sate. Whilst this approach assumes a linear problem, this additional
iteration converges quickly to a very low change per iteration.

Spectral lines are assumed to be Voigtian, and for the Voigt profiles,
we compute a large lookup table (by default 256 MB), which is
bilinearly interpolated. This table is filled using the approximation
of Humlícek (1982).

DexRT is designed to support multiple concurrent atomic mod-
els with overlapping transitions. We consider this to be an essential
requirement for modern radiative transfer frameworks, due to signif-
icant interactions between radiative transitions that otherwise need
to be treated manually, and could potentially be overlooked (e.g. for
the photoionisation of the Ca ii by the Lyman continua and lines,
Ishizawa 1971; Gouttebroze & Heinzel 2002; Osborne et al. 2021).

Whilst the wavelength integration of the rate matrix in DexRT is
the same as Lightweaver, the wavelength grid is created differently.
The wavelength range is divided into bands wherein a governing
transition is selected. A transition becomes governing by

• Being the spectral line closest to its rest wavelength of all active
spectral lines,

• Being the only spectral line active at a wavelength,
• Being the active continuum closest to its edge,

where active refers to being inside the range of wavelengths where
a transition is said to participate. The wavelength grid is then made
by merging the wavelength grids of each transition over the ranges
where it is the governing transition. This prevents the overly fine
and irregular wavelength spacing that can often occur when merging
overlapping wavelength grids in Lightweaver. This method of merg-
ing is similar to the final step of frequency mesh generation of Castor
et al. (1992).

3.4 Boundary Conditions

DexRT supports two boundary conditions:

(i) A simple free-space with no incoming radiation.
(ii) A tabulated form of the Promweaver boundary condition as

described in Jenkins et al. (2023) and Peat et al. (2024).

The latter of these is a table of emergent intensity from an arbitrary
plane-parallel atmosphere as a function of inclination and wave-
length, computed by Lightweaver. By default the FAL C model of
Fontenla et al. (1993) is adopted. On the highest cascade, rays that
start outside the volume are checked for intersection with a sphere of
solar radius, and sample intensity based on their angle to the normal
at intersection. Due to the very high angular resolution on the high-
est cascade, we have not found it necessary to perform the additional
boundary condition samples detailed in Jenkins et al. (2023) to cor-
rect the integral over the angular quadrature. This model currently
does not include coronal extreme ultraviolet emission for photoioni-
sation, but could easily be extended to support it.

3.5 Sparsity

In swept methods, such as the short characteristics approach typically
adopted in solar radiative transfer, the radiation field is carried down-
wind across the domain by the formal solver. Thus, even if a cell can
be proven to not interact with the radiation at a given frequency (for
example a chromospheric spectral line and coronal temperatures and
densities), it must still be involved in the sweep. As our radiance cas-
cades implementation is more akin to a long characteristics method,

we can first determine the cells of interest for a particular non-LTE
problem. In the current implementation this is simply a temperature
flag, typically set to 250 kK. This flag then defines the probes of cas-
cade 0 that may be involved in the non-LTE problem. Their bilinear
“parents” are recursively flagged up to the maximum cascade, and
the radiance intervals are only computed for these flagged probes,
and non-flagged cells are treated as transparent with no emission.
This can lead to dramatic reductions in computational cost for mod-
els with complex structure but where a large fraction of the domain
is non-participating media (such as corona). In this implementation
the memory utilisation is the same whether the sparse solution is
employed or not, however, the simple grid currently employed could
be replaced with an octree or VDB-like structure (Museth 2013,
2021), allowing for reductions in memory consumption, whilst also
accelerating the traversal of long-range radiance intervals through
free-space.

3.6 Parallelisation, single precision & GPUs

When computing a radiance cascade each radiance interval can be
computed entirely independently – allowing all radiance intervals
of a single wavelength to be evaluated in parallel. Unlike the com-
monly employed short characteristics solvers, radiance intervals can
be long, and span a significant portion of the domain. Multi-process
parallelisation has not been implemented in the current version of
DexRT , but is in development to support larger models.

DexRT is written in performance-portable C++20 using the YAKL
framework (Norman et al. 2023), and makes use of C++ metapro-
gramming features such as templates to allow for generation of effi-
cient functions based on different input parameters. The use of YAKL
allows DexRT to be compiled for different system architectures, both
parallel Central Processing Units (CPUs) and NVIDIA, AMD, and
Intel Graphical Processing Units (GPUs). Currently DexRT is ac-
celerated by the use of single GPUs where the entire model can fit
in memory. This style of embarrassingly-parallel computation maps
well to GPUs, so long as care is taken to minimise divergence be-
tween the threads of a block. GPUs operate threads in groups6 similar
to the vector units of CPUs and operate significantly faster when each
group makes contiguous memory access and takes the same branch
at conditionals. Within the radiance cascade computation, the major-
ity of processing time is spent solving the radiative transfer equation
along each radiance interval (primarily computing the directional
contributions the emissivity and opacity for moving models). To op-
timise for this, the cascades in DexRT are laid out so that each block
of inclination rays is contiguous, and the remaining threads of the
block are filled with the equivalent paths for different wavelengths.
This minimises divergence among threads of a block, but can be
disabled to reduce memory cost in large models.

Consumer GPUs, such as those typically employed for machine
learning, perform single precision floating point operations much
faster than double precision, with the typical ratio for current
NVIDIA offerings being 1:64. With careful selection of units, the
entire formal solution and construction of the rate matrix can be
performed in single precision. To this end, DexRT considers specific
intensity in units of kW m−2 nm−1 sr−1. The direct solution of the
rate matrix as per Rybicki & Hummer (1992) is not reliably stable
in single precision, however if the diagonal of the matrix (to ensure

6 These are referred to as warps on NVIDIA hardware, warps or wavefronts
on AMD, and subgroups on Intel. These typically take values ∼32.
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population conservation) is recomputed in double precision, then the
matrix solution in double precision yields the expected result.

The radiance cascades method highlights the effectiveness of GPU
acceleration for this style of calculation. On a workstation with an
Intel i7-13700 CPU and an NVIDIA RTX 4070 GPU, the GPU per-
forms the formal solution 80× faster, while consuming 2× the power.
This highlights the importance of employing GPU-based solutions
(40× lower energy consumption here) to reduce the environmental
impact and improve the equitability of radiative transfer calculations.
To this end, DexRT does not currently support solving the population
update from the rate matrix on CPU (however single formal solutions
are supported). On GPU the parallel batched solution to the system
of linear equations resulting from the rate matrix at each point in the
domain is provided by the MAGMA library7 (Dongarra et al. 2014).

3.7 Input/Output

DexRT is a standalone C++ program, and operates on two different
kinds of files:

• Simple human-readable configuration files in the YAML format
for simulation configuration and atomic model data.

• Binary storage of array data for input atmosphere, boundary
conditions, and output as netCDF 48.

A pydantic9 schema is available for each of the YAML files, al-
lowing for easy manipulation and validation of configuration values
in Python before running a model. The YAML-based format for
atomic data (Common Radiative Transfer Atomic Format – CRTAF)
is a draft of a tentative standard for unifying atomic models for
use in radiative transfer codes, and has an associated specifica-
tion10 and Python package11, currently capable of interoperating
with Lightweaver model atoms.

3.8 Modes

Several modes of operation are available in DexRT

• GivenFs: the input model provides a set of isotropic emissivities
and opacities at each point in the domain. These are solved for 𝐽,
allowing for the calculation of ad hoc models such as Figure. 1.

• Lte: An input atmosphere and one or more atomic models are
provided. DexRT computes 𝐽 throughout the model assuming LTE
atomic level populations and potential boundary conditions.

• NonLte: The full non-LTE iterated solution is computed for
the provided atmosphere and atomic models, optionally performing
pressure and charge conservation as detailed in Section 3.3.

3.9 Spectral Output

In conventional short characteristics codes, the emergent intensity
along the rays of the quadrature can be output from the formal solution
during the iterative process. This quantity is not directly available
from the radiance cascades method employed in DexRT . To this end,
we also provide a simple tool for post-processing the output of DexRT

7 https://icl.utk.edu/magma/
8 netCDF is developed by UCAR/Unidata (http://doi.org/10.5065/
D6H70CW6).
9 https://pydantic.dev/
10 https://github.com/Goobley/CommonRTAtomicFormat
11 https://github.com/Goobley/crtaf-py

models: a single-pass long characteristics formal solver, dexrt_ray,
for rays of arbitrary direction through the domain. This tool can also
output line formation diagnostics including the contribution function
at each point along each ray’s path. As discussed by de Vicente et al.
(2021), a long characteristics formal solution provides a notably
spatially sharper solution than short characteristics for inclined rays.

The single-pass nature of this tool utilises a “front-to-back” for-
mulation of the radiative transfer equation: each ray is traced from
the point where the emergent intensity is to be found, accumulat-
ing opacity and attenuated emission from each cell traversed. All
key spectral diagnostics, including the contribution function, can be
cast in a form computable with this approach. The efficiency of this
single-pass solution allows for calculation and output of a handful of
wavelength points from one viewpoint at close to interactive fram-
erates. This tool could additionally be repurposed for considering
off-axis rays through grids of atomic populations computed using
1.5D plane-parallel methods.

4 APPLICATION

To demonstrate the effectiveness of DexRT for models of solar promi-
nences we apply it to a snapshot of a 2.5D MHD model of a solar
prominence computed by Jenkins & Keppens (2021). This model
is computed with MPI-AMRVAC (Xia et al. 2018; Keppens et al.
2023), leveraging the adaptive mesh refinement capabilities of this
code. It studies the self-consistent in-situ formation of a solar promi-
nence by radiative cooling and condensation of coronal plasma. The
volume is initialised with a linear force-free field, and a flux rope is
created via converging and shearing footpoint motions applied to the
lower boundary. Pockets of increased density form, and are subject
to both a runaway thermal instability (due to the optically thin ra-
diative losses), and Rayleigh-Taylor instability as they gravitationally
slip through surrounding less dense material. These fall until sup-
ported by the magnetic field to form a primary condensation which
continues to cool and grow via thermal instability.

In Section 4.1 and 4.2 we describe the setup of our model, be-
fore presenting spectral results in Section 4.3 and comparing with
the commonly employed H𝛼 proxy of Heinzel et al. (2015) in Sec-
tion 4.3.1. Then, in Section 4.4 we investigate the formation of Ly 𝛽

line in this model. Finally, we discuss the performance and parameters
of the DexRT solution in Section 4.5. The analysis of this snapshot is
not intended to be exhaustive, but instead motivate the use of modern
multidimensional radiative transfer tools such as DexRT for this style
of model.

4.1 MHD Snapshot

One of the high-resolution snapshots (with an effective resolution
of 5.7 km) analysed in Jenkins & Keppens (2021) was selected as
input to our non-LTE model. Due to presenting the most complex
temperature and density structure the 𝑡 = 4519 s snapshot of the 3 G
model was chosen. The temperature and pressure of this snapshot are
shown in Figure 9, alongside the electron density obtained through
charge and pressure conservation. The 𝑧-axis is taken as normal to
the solar surface at 𝑥 = 0 Mm, whilst the 𝑥-axis is perpendicular to
this, and tangent to the solar surface. As such, a view down the 𝑧-axis
will see the model backlit by the solar disk as a filament, and along
the 𝑥-axis as a prominence. The flux rope contains a highly strati-
fied temperature and density structure, with a multi-layered primary
condensation in the lower centre of the domain. There is a notable
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Figure 9. Parameters of the MHD snapshot (𝑡 = 4519 s of the high-resolution 3 G model of Jenkins & Keppens (2021)) used for our non-LTE model. The
temperature and pressure are extracted directly from the MPI-AMRVAC model, whilst the electron density (𝑛𝑒) is a result of the charge conservation applied
during iteration with DexRT . The 𝑧-axis is taken as the normal to the solar surface at 𝑥 = 0 Mm, whilst the 𝑥-axis is perpendicular to this, and tangent to the
solar surface.

“arm” condensation feature in the −𝑥 region stretching just past an
altitude of 𝑧 = 20 Mm.

This model, slightly cropped from the full domain of the original
simulation, has an 𝑥 × 𝑧 resolution of 2048× 3072 with a voxel scale
of 5.7 km.

4.2 Non-LTE Model

We apply DexRT to this snapshot to solve for the self-consistent ra-
diation field, statistical equilibrium populations, and ionisation state
of hydrogen and calcium. These two elements are commonly used in
prominence observations and their transitions are commonly used to
probe different layers of atmospheric models (Labrosse et al. 2010).
Classic atomic models are adopted for these two elements:

• A five-level plus continuum model for hydrogen with ten lines
following the approach of Johnson (1972). This model is the default
model for hydrogen employed in Lightweaver and RH.

• A five-level plus continuum model for Ca ii with five lines (H, K,
and the infrared triplet), where the continuum level represents Ca iii.
This model is the default model for Ca ii employed in Lightweaver
and RH.

Both charge and pressure conservation, as described in Section 3.3
are employed. Partial frequency redistribution (PRD) effects are not
considered.

The Promweaver boundary condition, tabulated by Lightweaver,
is used, ensuring self-consistently diluted and limb-darkened (as
computed from a plane-parallel model) radiation is included at ev-
ery wavelength, containing irradiation from these same two atomic
models, in addition to LTE background terms from other species.
After merging the wavelength grids, 709 wavelength points remain
in the model; these models are essentially unchanged from those used
in typical plane-parallel models, without the common reduction in
wavelength quadrature points.

Using a cutoff temperature of 250 kK, as discussed in Section 3.5,
approximately 25% of the cells are flagged as active, with an equiva-
lent number of the probes of cascade 0, and an increasing fraction of
the upper cascades to approximately 33% of the uppermost cascade.

Our convergence criterion for the iteration is the maximum rel-

ative difference of level populations, electron density, and pressure
conservation modifications between iterations dropping below 10−3.
In practice, this is dominated by the level populations.

4.2.1 Promweaver Model

For comparison, two sets of Promweaver12 models were also com-
puted. These use the same configuration as above, but consider the
domain in two different orientations to produce the prominence and
filament views, as in Jenkins et al. (2023) and Peat et al. (2024).
These models are 1.5D plane-parallel, so neighbouring columns do
not interact with each other. Additionally, there is no guarantee of
self-consistency between the same grid cell in a column computed
in “prominence-mode” to that same cell in a column computed in
“filament-mode”. In both cases every 16th column was computed, so
these models appear somewhat more “blocky”.

4.3 Spectra

The spectra of the Ly 𝛽, Ca ii K, and H𝛼 spectral lines obtained
by post-processing with dexrt_ray (see Section 3.9) and with
Promweaver for the model in a filament and prominence view are
shown in Figures 10 and 11 respectively. These figures also include a
plot of the correlation between the DexRT and Promweaver spectra.
For each of these spectral lines, a video of the spectrum as a function
of viewing angle from the DexRT model is available online.

For each of the spectral lines shown in filament view in Fig 10, we
see a structured spectrum overlying a uniform background spectrum
(from the solar disk). In these panels, the slit position is analo-
gous to the 𝑥-axis of the input atmosphere. There is good qualitative
agreement between DexRT and Promweaver for the Ca ii K and H𝛼

spectral lines, and this is confirmed by the strong correlation. We
note that the absorption features in the line core from the primary
condensation (around slit position 0 Mm) are slightly darker in the
DexRT solution. This is also true for the lighter absorption features

12 Promweaver is a Python package using Lightweaver to generate plane-
parallel spectra of isolated solar structures such as prominences.
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Figure 10. Synthesised spectra for Ly 𝛽, Ca ii K, and H𝛼 looking vertically through the model as a filament. The first column shows the spectra obtained with
DexRT , the second the spectrum from Promweaver, and the third the correlation between the two. The slit position is analogous to the 𝑥-axis of the atmospheric
model. Each point on the correlation plot is coloured by the density of points in this region.

0.025
0.000
0.025

 [n
m

]

Ly
DexRT Promweaver Correlation

Pearson R: 0.589

0.05

0.00

0.05

 [n
m

]

Ca  K

Pearson R: 0.858

10 15 20 25
Slit Position [Mm]

0.1

0.0

0.1

 [n
m

]

H

10 15 20 25
Slit Position [Mm]

Pearson R: 0.926

Figure 11. Synthesised spectra for Ly 𝛽, Ca ii K, and H𝛼 looking horizontally through the model as a prominence. The first column shows the spectra obtained
with DexRT , the second the spectrum from Promweaver, and the third the correlation between the two. The slit position is analogous to the 𝑧-axis of the
atmospheric model. Each point on the correlation plot is coloured by the density of points in this region
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on either side of the central condensation in Ca ii K. The absorption
feature corresponding to the “arm” at a slit position of −3 Mm is
far narrower in wavelength and less pronounced in the Promweaver
Ca ii K solution.

The agreement in the Ly 𝛽 line is much less good. For slit posi-
tions in the [−4, 4] Mm range the DexRT model predicts three distinct
absorption structures along the line core, while the Promweaver so-
lution presents much more fragmentary absorption effects. Addition-
ally, the asymmetries (blue for negative, red for positive slit position)
and variations in line widths are far more pronounced in the DexRT
model. This is particularly evident around Δ𝜆 = −0.02 nm in the
[−3, 0.5] Mm range, and around Δ𝜆 = 0.02 nm in the [0.5, 3] Mm
range. The correlation plot shows a large scatter of values at lower
intensities with no clear structure.

The effect of the structure creating a strong emission feature in
Ly 𝛽 around slit position −0.5 Mm in Figure 10 spreads over a much
wider range of columns, and is a clear signature of two-dimensional
transfer effects modifying nearby populations.

These same spectral lines are shown for the prominence viewpoint
in Figure 11. Here, the slit position is analogous to the 𝑧-axis of the
input atmosphere. The DexRT and Promweaver spectra agree sig-
nificantly less well than in the filament case, also highlighted by the
increased scatter on the correlation plots. When viewed as a filament
there is no background illumination from the solar disk thus all spec-
tral lines are in emission, but may contain absorption features such as
central reversals. In all spectral lines, no significant emission is seen
above ∼ 20 Mm. The most striking difference between the DexRT
and Promweaver models is the extreme width of the spectral lines
for slit positions in the [16, 20] Mm range in the Promweaver model,
that isn’t present for the DexRT treatment. Emission in this region
appears to be mostly due to the “arm” structure of the atmosphere.
This effect is most apparent in the Ly 𝛽 line where a gradual taper-
ing of line width is seen over the [12, 20] Mm range in the DexRT
model versus a mostly constant line width in the Promweaver model
over this same range. The spatial variations in intensity of the Ly 𝛽

line vary much more smoothly in the DexRT model, although there
remains complex finely-structured line profiles in the [10, 12] Mm
region where we are observing the bottom of the primary condensa-
tion.

Considering now the Ca ii K and H𝛼 lines, we see good agreement
in line shapes over the [10, 15] Mm range corresponding to the bulk
of the primary condensation. Within these structures, the peak inten-
sities are higher in the DexRT model, and the asymmetries are more
significant. The spatial intensity falloff from the bright band at the
bottom of each separate structure in the [12, 15] Mm range is also
slower in the DexRT model, likely a sign of two-dimensional transfer
effects.

As previously discussed for Ly 𝛽, the differences over the
[15, 20] Mm region corresponding to the “arm” structure are dra-
matic in the Ca ii K and H𝛼 lines. There is close to no emission in
this region in the Promweaver model, compared to a gradually bright-
ening structure in the DexRT solution. The bright band at 20 Mm in
the DexRT output is faintly visible in the Promweaver spectra.

We note that the reduction in Pearson correlation coefficient in
the prominence case will be somewhat due to the lack of consistent
(but wavelength-varying) background spectrum present in the fila-
ment model. Nevertheless, the agreement between the full DexRT
solution, and the 1.5D plane-parallel Promweaver model is signifi-
cantly less good for a prominence synthesis than a filament one. The
Promweaver model is also incapable of synthesising inclined rays
through the model, instead simply producing the spectrum along
inclined rays through each plane-parallel column. Videos of these

spectra at different viewing angles through the DexRT model are
available the online supplementary material.

4.3.1 H𝛼 Proxy

The approximate H𝛼 synthesis method of Heinzel et al. (2015) has
become a routine tool synthesising emission from complex two- and
three-dimensional models (e.g. Gunár & Mackay 2015; Claes et al.
2020; Zhou et al. 2020; Martínez-Gómez et al. 2022; Jenkins &
Keppens 2022). The recipe is simple to apply and computationally
affordable, although intended for optically thin structures. It was
previously benchmarked against 1.5D synthesis of MHD models by
Jenkins et al. (2023), and found to provide overall good agreement,
especially for the columns with total opacity 𝜏𝜈 < 2 in the H𝛼 line
core, with reasonable agreement for more optically thick columns.

In Figure 12 we compare the results of this proxy (labelled Hea15),
with DexRT for the H𝛼 line, when viewed as a prominence and as
a filament. For consistency, the background for the filament case
uses the same spectrum. The maximum optical depth in the H𝛼 line
core is ∼ 1.8 in prominence view and ∼ 3.8 in filament projection.
Our presentation of the proxy differs from most applications due to
calculating spectra rather than simply line-core intensities and we
assume a Gaussian line absorption profile.

As in the previous section, the agreement between the two treat-
ments when considering a filament is very good. The H𝛼 proxy
creates darker and broader absorption features, visible around −3,
1, and 4 Mm, meanwhile DexRT produces a stronger absorption fea-
ture in the red wing around−0.5 Mm. The overall agreement between
these approaches is very good; note that the scatter plot only includes
points with a filament optical depth above 0.01, to limit the effects
of the common background.

In the prominence view the limitations of the Gaussian line profile
adopted become more evident. The overall wavelength structure of
the two techniques agrees well, however, the H𝛼 proxy is unable to
capture the brightenings around 11, 12 and 13 Mm, and fails to show
the strong wavelength shear associated with the last of these, along
with the darkened region above it. Once again, the “arm” structure
in the [16, 20] Mm range differs between treatments, however the
H𝛼 proxy, which is based on two-dimensional models, handles this
better than the 1.5D Promweaver model. The diffuse radiation around
17.5 Mm is comparable, although the proxy fails to produce the
brightening around 20 Mm.

Whilst not a replacement for the full non-LTE treatment, the H𝛼

proxy of Heinzel et al. (2015) performs admirably in capturing the
qualitative structure of this model, but performs notably better on the
filament view than the prominence view, despite its higher optical
depth. This is likely related to the fact that the background absorption
in each column is more independent for the filament view, whereas the
prominence emission will be more greatly affected by 𝐽 throughout
the prominence structure.

4.4 Ly 𝛽 Formation

The Ly 𝛽 filament spectrum shown in Figure 10 appears to be made
of two components: a bright underlying structure, with an attenuating
absorption layer on top. This is particularly evident when viewing
the video in supplementary material as there is a clear parallax shift
between these two layers as the viewing angle rotates.

To investigate the formation of this line dexrt_ray is used to com-
pute the contribution function (the integrand of the radiative transfer
equation, highlighting the contributions to the emergent spectrum).
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Figure 12. Comparison of the H𝛼 spectrum from DexRT from the axis-aligned prominence (upper row) and filament (lower row) viewpoints with the predicted
intensity from the H𝛼 proxy of Heinzel et al. (2015), labelled Hea15. The correlation in the third column shows fair agreement. For the filament projection, the
underlying solar spectrum follows the same model is the same in both cases for consistency. Specific intensity in units of kW m−2 nm−1 sr−1.

This is shown, along with the line profile, and 𝐽𝜈 in Figure 13. The
colour-collapsed (COCO) methodology adopted in this figure is the
same as Druett et al. (2022), although a tonemapping function is
applied to improve the visibility of details in the high-dynamic range
data as in Osborne & Fletcher (2022). From top to bottom these
panels show:

(i) The Ly 𝛽 spectrum.
(ii) The colour-collapsed spectrum, highlighting how asymme-

tries correspond to a colour.
(iii) The colour-collapsed contribution function, overlaid with the

𝜏𝜈 = 1 surfaces for the three components (red line for the red wing,
blue line for the blue wing, and dashed black/white line for the line
core).

(iv) The colour-collapsed angle averaged radiation field 𝐽𝜈 .

These colour-collapsed plots are very powerful for seeing the spatial
collocation of features, but are not colourblind-friendly, thus we also
provide versions of the lower two panels with the colour channels
exploded as Figure A1. Each channel of these colour-collapsed plots
includes Gaussian weighted contributions with a standard deviation
of 0.01 nm, centred onΔ𝜆 = 0.025, 0.0,−0.025 nm for the red, green,
and blue channels, respectively. For example, a pixel that is predom-
inantly blue has a blue asymmetry, one that is green is dominated by

the line core, and one that is magenta contains strong contributions
from both line wings, but little from the line core.

Looking at the structure of the atmospheric model, if there are
indeed two distinct layers, then we would expect these to be the upper
arc above 𝑧 = 20 Mm and the lower structure containing the primary
condensation below this. From the contribution function panel, we
see that the 𝜏𝜈 = 1 layer in the line core traces this upper arc other
than in the [0.75, 1.75] Mm slit position range. The 𝜏𝜈 = 1 lines for
the blue and red wings move between the upper and lower surfaces
much more frequently, but for the majority of the [−3, 3] Mm slit
position range trace the upper surface of the lower structure.

The contribution function in the primary condensation around slit
position 0 Mm is mostly pink, highlighting the contribution to the
line wings from this region, whereas the contribution to the line core
along this ray is in the upper arc around 𝑧 = 26 Mm. Moving towards
the −𝑥 side of the primary condensation, the contribution function
turns mostly yellow, indicating contributions to the red wing and line
core, whilst moving towards the +𝑥 side, the contribution function
becomes primarily blue, indicating blue wing contributions.

Considering now the strong blue asymmetry in the line profile in
the [−3.5, 0.5] Mm range, and inspecting the “arm” feature on the
contribution function panel we see that, with the exception of the
blobs around slit position −1.75 Mm, the 𝜏𝜈 = 1 surface for the blue
wing always lies below the red wing. The centre of the “arm” feature
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Figure 13. From top to bottom: 1. Ly 𝛽 spectrum when viewed as a promi-
nence. 2. The previous spectrum colour-compressed to highlight line asym-
metries. 3. The colour-collapsed contribution function for this line, with the
associated weighted 𝜏𝜈 = 1 for the red wing, blue wing, and line core, in
red, blue and white with black dashes respectively. 4. Colour-collapsed 𝐽

throughout the model. A colourblind-friendly variant of the lower two panels
(with the colour channels exploded) is provided as Figure A1.

Code Region Total Time (s) Runtime Fraction
Cascade 5 4.23 × 105 63.6 %
Cascade 4 1.42 × 105 21.4 %
Cascade 3 5.43 × 104 8.2 %
Cascade 2 1.69 × 104 2.5 %
Cascade 1 5.52 × 103 0.8 %
Cascade 0 3.11 × 103 0.5 %
Statistical Equilibrium 3.99 × 102 0.05 %
Charge Conservation 5.27 × 103 0.8 %
Pressure Conservation 3.98 × 10−1 0 %

Table 1. Timing breakdown of the primary code regions in the DexRT solution
of the Jenkins & Keppens (2021) snapshot.

is primarily blue, with a yellow upper edge, and red lower edge. The
blue wing over this range is forming in the core of this structure,
whilst increased opacity in the red wing appears to be attenuating
deeper contributions.

The bottom panel shows a colour-collapsed representation of 𝐽𝜈
across the Ly 𝛽 line. As the model is illuminated by a line in emis-
sion relative to the neighbouring continuum, we see a predominantly
green image. The effects of radiation dilution are clearly apparent
when considering the variation in brightness along 𝑧 at the edge of
the image. Additionally, we note that the structure is casting shadows:
these structures will interact radiatively, both pumping and shading
each other. Shadows are also cast by the dark blobs around slit po-
sition −1.75 Mm, and the thicker features of the outer arc. The cool
primary condensation appears dark compared to the surrounding
free-space (due to opacity effects blocking incoming radiation), and
has a pink tint along the centre of the slit, similarly to the contribution
function. The “arm” and lower +𝑥 regions have a distinct blue cast,
due the the enhancement of the blue wing, the latter of which is at
too great an optical depth to contribute significantly to the outgoing
spectrum. The lower −𝑥 region has a yellow cast, indicating the en-
hancement in the red wing here, also at too great an optical depth to
strongly influence the outgoing spectrum.

The brightening in the red wing around slit position −0.75 Mm,
corresponds to a strong enhancement in the red contribution function
and 𝐽𝜈 from layers around 𝑧 = 13 Mm and 𝑧 = 15 Mm on the edge
of the primary condensation. The deeper layer is notable by being
significantly brighter in 𝐽𝜈 than the rest of the primary condensation.
It corresponds to a region of significantly enhanced pressure in the
atmospheric model.

Correlating the previously discussed emission features with the
atmospheric model, we see that all emission in the line originates
below ∼ 100 kK, as expected. The pressure in the primary condensa-
tion and “arm” are much higher than in the overlying upper arc. This
high pressure, combined with the fluid motions and increased irradi-
ation at this height, leads to the the production of a strong and broad
emission line, which is then attenuated by the optically-thick much
narrower line formed in the upper arc. This behaviour is somewhat
analogous to the multi-threaded Ly 𝛽 models of Gunár et al. (2008)
where asymmetries were created by stacking multiple prominence
threads along the line-of-sight. DexRT enables this kind of study but
with self-consistent radiative interaction between these threads.

4.5 Performance, Memory Consumption, & Parameters

This model, with a 𝑧× 𝑥 resolution of 3072×2048 voxels was solved
using an NVIDIA RTX A6000 48 GB in 185 GPU hours. A break-
down of the runtime across the different cascades and population
updates is shown in Table 1. Six cascades were used, with a branch-
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ing factor 𝛼 = 2, with a radiance interval length of 1.5 voxels and 4
angular samples on cascade 0. For inclination relative to the 𝑦-axis,
a Gauss-Radau quadrature with 8 directions was used. The bilinear
fix was not used as, by inspection, it was not found necessary. We
note that the higher cascades dominate the calculation time, due to
the computation cost of the long intervals. Additionally, the charge
conservation step is much slower than expected as it was computed
on the CPU rather than GPU here. Convergence took 378 iterations
to a tolerance of 10−3.

This snapshot was the least sparse of those analysed by Jenkins
& Keppens (2021); many of the 10 G snapshots have ∼ 5 % active
cells, and can be solved a few GPU hours. Solving wavelengths in
batches of 4 to minimise GPU warp divergence required 18.5 GB of
GPU memory: reducing the batch size will affect performance but
enable this state-of-the-art simulation to be run on a single consumer
8 GB GPU. Host (CPU) memory consumption was 17 GB, primarily
due to the storage of the full 𝐽 array, which was paged on and off the
GPU for each wavelength batch.

5 CONCLUDING REMARKS

We have presented radiance cascades, a novel framework for effi-
ciently computing the radiation field throughout a domain by ex-
ploiting the internal structure of this function (through a property
termed the penumbra criterion) allowing the reuse of ray segments
termed radiance intervals. Radiance cascades exploit the observa-
tion that when considering shells around a point, nearby sources can
be resolved with low angular resolution, but vary rapidly in space,
while distant sources require high angular resolution, but vary slowly
in space.

Additionally, we have shown initial results from DexRT , a GPU-
accelerated implementation of this technique, performing a state-of-
the-art non-LTE synthesis from a 3072 × 2048 prominence snap-
shot by Jenkins & Keppens (2021), with no evidence of the ray
effects that plague short characteristics methods in finely-structured
MHD models. The difference between the DexRT and plane-parallel
Promweaver results, especially in lines with high optical thickness
such as Ly 𝛽, highlights the importance of multidimensional radiative
transfer effects in modern finely-structured MHD models, ensuring
the consistency between 𝐽 in the prominence and filament projec-
tions. These are key not only for forward modelling of MHD models
but also for future studies considering the radiative losses (and gains)
due to optically thick transitions, including correctly accounting for
these structures shadowing each other.

Good agreement was found in the overall morphology of the op-
tical spectra (Ca ii K and H𝛼) between DexRT and Promweaver,
however significant variations in intensity were found, particularly
from a prominence view. The H𝛼 proxy of Heinzel et al. (2015) con-
tinues to perform admirably for its low computational cost against the
two-dimensional radiative transfer results presented here, although
not all details present in the DexRT model were captured.

The current implementation in DexRT is not optimal, and many
avenues for improvement exist, including the inclusion of partial fre-
quency redistribution effects through an extension of the Jacobian-
Free Newton-Krylov method of Arramy et al. (2024), or potentially
employing the radiance cascades probe structure as a form of geo-
metric multigrid to accelerate non-LTE convergence (e.g. Štěpán &
Trujillo Bueno 2013; Bjørgen & Leenaarts 2017). Ray effects due to
short characteristics methods will appear in atmospheres with sharp
geometric transitions between optically-thin and -thick structures,
such as those with overlying arcade structure or around fibrils, al-

though these may be potentially difficult to spot in three-dimensional
models, due to visualisation difficulties. It is also important to cor-
rectly include the effective albedo of these structures in models of
the lower atmosphere. We believe that the radiance cascades method
provides a key stepping stone towards tractable multidimensional
non-LTE radiative transfer and detailed radiative losses in finely
structured atmospheric models.
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APPENDIX A: COLOUR-COLLAPSED PLOT CHANNELS

Figure A1 shows the lower two panels of Figure 13 with the colour
channels exploded for colourblind legibility.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Explodes the colour channels of the COCOPLOTs (𝐶𝐼 and 𝐽) in Figure 13 for colourblind legibility. Unfortunately, the information is less legible
in this form than as a COCOPLOT due to the difficulty of collocating and comparing relative intensity in separate panels.
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